Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation

نویسندگان

  • Mianqun Zhang
  • Xiaoxin Dai
  • Yalu Sun
  • Yajuan Lu
  • Changyin Zhou
  • Yilong Miao
  • Ying Wang
  • Bo Xiong
چکیده

Stag3, a meiosis-specific subunit of cohesin complex, has been demonstrated to function in both male and female reproductive systems in mammals. However, its roles during oocyte meiotic maturation have not been fully defined. In the present study, we report that Stag3 uniquely accumulates on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Depletion of Stag3 by gene-targeting morpholino disrupts normal spindle assembly and chromosome alignment in oocytes. We also find that depletion of Stag3 reduces the acetylated level of tubulin and microtubule resistance to microtubule depolymerizing drug, suggesting that Stag3 is required for microtubule stability. Consistent with these observations, kinetochore-microtubule attachment, an important mechanism controlling chromosome alignment, is severely impaired in Stag3-depleted oocytes, resultantly causing the significantly increased incidence of aneuploid eggs. Collectively, our data reveal that Stag3 is a novel regulator of microtubule dynamics to ensure euploidy during moue oocyte meiotic maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes.

For the success of fertilization, spindles of vertebrate oocytes must remain stable and correctly organized during the arrest in metaphase II of meiosis. Using a two-hybrid screen with MAPK as a bait, we have recently identified MISS (MAPK interacting and spindle stabilizing) which controls mouse oocyte metaphase II spindle stability. Using the same screen, we identify another MAPK partner, DOC...

متن کامل

P-90: The Effect of Nitric Oxide on Mouse Oocyte in Vitro Maturation in Two and Three Dimensional Conditions

Background: In vitro culture of ovarian follicles may preserve fertility in women with premature ovarian failure due to cancer .It seems that creation a condition that could maintain cellular communications and supports growth of follicles to produce mature oocytes appear to be essential. Nitric oxide (NO) has been recently shown to act with a dual action in mouse oocyte meiotic maturation depe...

متن کامل

PAK1 regulates spindle microtubule organization during oocyte meiotic maturation.

P21-activated kinase 1 (PAK1), an effector of Rho GTPase Rac 1 and Cdc42, is required for mitotic progression. However, its functions in meiosis are unclear. In the present study, we examined the expression, localization and function of PAK1 during mouse oocyte meiotic maturation and found that PAK1 was mainly associated with the meiotic spindle microtubules. Taxol treatment resulted in localiz...

متن کامل

The Influence of Meiotic Spindle Configuration by Cysteamine during in vitro Maturation of Mouse Oocytes

Background: The aim of this study was to assess effects of cysteamine as an anti-oxidant on rate of in vitro maturation of oocyte and determination of its effects on spindle size and shape. Methods: Pre-mature mice were primed with pregnant mare stimulating gonadotrophin (PMSG) and germinal vesicle (GV) stage oocytes were obtained 48 h after. The oocytes were cultured in tissue culture medium (...

متن کامل

HDAC8 functions in spindle assembly during mouse oocyte meiosis

HDAC8 is a class I histone deacetylase that functions in a variety of biological processes through its non-histone substrates. However, its roles during oocyte meiosis remain elusive. Here, we document that HDAC8 localizes at spindle poles and positively participates in the regulation of microtubule organization and spindle assembly in mouse oocytes. Depletion of HDAC8 by siRNA-based gene silen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017